
OCI‑based Vulnerability Containers
with Metadata for Automated
Evaluation of Security Analysis Tools
Bachelor Thesis

David Mehren
2022‑05‑16

Supervised by
Prof. Dr. Falk Howar
Simon Dierl, M.Sc.

TU Dortmund University
Department of Computer Science
Chair 14 for Software Engineering
AQUA Research Group

Contents

Abstract 1

1. Introduction 2
1.1. Security Analysis . 2
1.2. Related Work . 3
1.3. Thesis Goals & Requirements . 6
1.4. Structure of this Thesis . 6

2. Foundations 8
2.1. Docker & The Open Container Initiative . 8
2.2. Static & Dynamic Code Analysis . 10
2.3. Static Analysis Results Interchange Format . 12

3. Vulnerability Metadata & Packaging 14
3.1. Metadata for Vulnerable Software . 14
3.2. Packaging Vulnerabilities as Container Images . 16

4. Architecture of the csat Command Line Tool 18
4.1. Features and Architecture . 18
4.2. Metadata Schema & Validation . 20
4.3. Vulnerability Packaging and Patching . 20
4.4. Modular Build System . 21
4.5. Analysis Tool Integration . 23
4.6. Analysis Automation & Result Verification . 24

5. User Interface 28
5.1. Adding Analysis & Build Tools . 28
5.2. Vulnerability Packaging . 29
5.3. Analyzing Vulnerabilities . 30

6. Module Integration 32
6.1. Build Tool Integration . 32

i

Contents ii

6.2. Analysis Tool Integration . 33

7. Evaluation 36
7.1. Build Tool Integration . 36
7.2. Analysis Tool Integration . 36
7.3. Vulnerability Metadata and Packaging . 37
7.4. Analysis Infrastructure . 37
7.5. Reproduction of Vulnerability Detection with Jaint . 38

8. Conclusion 39
8.1. Limits and Future Work . 40

9. References 41

A. Appendix 45

David Mehren ii

Abstract

Security analysis tools search for vulnerabilities in source code or binaries. Testing these tools re‑
quires databases of softwarewith knownvulnerabilities, but nodatabase suitable for automatedanal‑
ysis exists today. To decide if an analysis tool has detected the correct vulnerability, metadata must
be sufficiently detailed, which existing projects lack.

This thesis presents a metadata format and a corresponding command line tool, together called Con‑
tainers for Security Analysis Tools (CSAT). CSAT can be used to package security vulnerabilities in OCI
containers and to automate the analysis of these containers with security analysis tools. CSAT’smeta‑
data enables verification of analyzer results and easy re‑use of vulnerabilities with different analysis
tools. It also allows to automatically check for compatibility between vulnerability and analyzer. The
CSAT command line interface supports users in packaging vulnerabilities and automates the build
and analysis workflow. It uses Docker containers as a packaging format and to execute analyses inde‑
pendent of the host operating system.

Wedemonstrate CSAT’smodular architecture by integrating twobuild systems and four analysis tools.
Finally, we use CSAT to automatically reproduce results from another paper, showing that our tool is
suitable for real‑world use.

1

1. Introduction

1.1. Security Analysis

As software becomes more and more ubiquitous and integrated into everyday items with trends like
the Internet of Things, software security alsomoves into the spotlight. Since 2016, the number of pub‑
licly disclosed security vulnerabilities has steadily risen [1]. The automated analysis of software for
security issues, also known as application security testing (AST) has therefore become more popular
and widely used development platforms like GitHub and GitLab have integrated AST into their offer‑
ings.

Security analysis tools can automatically detect common security problems, e.g., usage of weak
hash functions or insufficient validation of user‑provided data, by analyzing software source code
or binaries. Various techniques for analysis already exist and new approaches are continuously
researched.

Developers of new tools naturally want to evaluate the effectiveness of their analyzer. A common
approach is to utilize a preexisting collection of vulnerable software artifacts. An artifact typically en‑
compasses the source code andmetadata describing the vulnerability. The newly developed tool can
then analyze each artifact and report its findings. These are compared to the metadata, allowing to
judge whether the analyzer reliably and correctly detects security issues. Performing such an evalua‑
tion at scale is labor‑intensive, as currently no sufficiently generic system for automating the process
exists.

Creators of security benchmarks and vulnerability databases face related challenges. For example, a
researcherdevelopinganew technique for detecting vulnerabilities inpublic source code repositories
cannot easily test the extracted issues with existing analyzers. No common standard for vulnerability
packaging and description exists, so every project needs to create its ownmethod ofmaking artifacts
available for use by others.

Another challenge in testing security analysis tools is posed by dependency problems: analyzed code
may require older versions of libraries or runtimes, like end‑of‑life versions of the Java Runtime En‑
vironment or C libraries. Installing such versions in the normal operating system may be tedious or
present security issues. This makes it more and more difficult to reproduce findings in aging soft‑
ware.

2

1. Introduction 3

This thesis presents an automation framework and a format for vulnerability packaging and meta‑
data, solving the challenges of both developers of analysis tools and vulnerability databases. Newly
developed analysis tools can be integrated and have instant access to all vulnerabilities using our
packaging. Vulnerable software can be packaged and described with our metadata format, allowing
all integrated analyzers to examine it.

1.2. RelatedWork

In preparation of this thesis, we examined existing projects that collect buggy or vulnerable software.
We also looked at the automation frameworks used by various scientific competitions on software
research.

1.2.1. Evaluation of Existing Bug Databases

To be useful for testing of security analyzers, bug or vulnerability databases must provide the source
code of the collected software in away that allows automated processing. Additionally, themetadata
must be sufficiently detailed to allow evaluation of analysis tool results. We created six criteria used
in the evaluation:

• Source Code Availability: The source code of the software in the affected version is provided.
Alternatively, a reference to a version control system (VCS) commit, fromwhich the source code
can be fetched, is available.

• Build Information: The database contains information about the build process for each arti‑
fact, so the source code can be compiled into a binary. Additionally, some generic way of exe‑
cuting the build process should be provided.

• Bug Information: The database contains information about the type of (security) issue and, if
available, a unique identifier that allows to cross‑reference the issue with other databases.

• Bug Patch: The database provides a patch for the vulnerability, either directly or as a VCS refer‑
ence. Thepatchallows togenerateanon‑vulnerable versionof theartifact, so that false‑positive
findings of analyzers can be detected. In the best case, the only change in the patch is the fix for
the particular security issue.

• BugLocation: Eachartifacthas informationabout theprecise locationof the issue in the source
code, including a filename, line, class or method.

• Isolation fromHost: The project provides a way to execute or analyze the buggy software in a
host‑independent environment, allowing separate versions of runtimes or libraries to be used.

Table 1.1 contains an overview of the results of the examination. The evaluated projects can be
roughly divided into two classes. First are projects that focus on collecting security issues and there‑

David Mehren 3

1. Introduction 4

Database Programming
Languages

Source
Code

Build
Info

Bug
Info

Bug
Patch

Bug
Location

Isolated
from Host

Big‑Vul C/C++ ✓1 × ✓ ✓2 × ×
Bugs.jar Java ✓1 × × ✓ × ×
BugsInPy Python ✓1 ✓3 × ✓ × ✓4

BugsJS JavaScript ✓1 ✓5 × ✓2 × ✓4

CrossVul mixed ✓ × ✓ ✓2 × ×
Defects4J Java ✓1 ✓6 × ✓2 × ×

NIST Julia Test Suites C/C++, Java ✓ ✓7 ✓ × ✓ ×
OWASP Benchmark Java ✓ ✓8 ✓ × × ×

SAP Project KB Java, Python ✓1 × ✓ ✓9 × ×

Table 1.1.: Existing Bug & Vulnerability Databases, compared for their suitability for automated
security analysis

fore contain vulnerability‑specific metadata, like Big‑Vul [2], CrossVul [3], the OWASP Benchmark [4]
and the NIST Julia Test Suites [5]. The other class contains projects that more generally collect buggy
software without a focus on security and includes BugsJS [6], BugsInPy [7], Defects4J [8] and SAPs
Project KB [9].

All evaluated databases provide the source code, mostly as references to commits in the Git version
control system of the respective source software. Many projects also encompass patches for the bugs
they contain, often as VCS references but also as diff files.

Availability of build information ismixed. BugsInPyandBugsJSbothpackagebugs for interpreted lan‑
guages, so do not need a build system. The NIST Julia Test Suites and the OWASPBenchmark provide
build files for commonJavabuild tools, but only theNISTdatabases also contain a system to automat‑
ically execute analyzers on their vulnerabilities. Also noteworthy is Defects4J, which abstracts build
tools using a custom execution framework.

BugsInPy and BugsJS stand out by being the only projects to provide means for host isolation. Both
use Docker (which we explain in more detail in Section 2.1) and provide a single image set up to exe‑

1Referenced by VCS URL and/or commit hash
2The commit hash of a fix is available, so a patch can be generated
3Provides build script per application
4Can execute all tests inside a Docker container
5Provides Python tooling that executes tests
6Provides build system abstraction layer
7Provides Ant build files, and a Python utility to execute test cases with analyzers
8All vulnerabilities are part of a single Maven project
9The commit hash of a fix and archives of buggy and fixed source code are available, so a patch can be generated

David Mehren 4

1. Introduction 5

cute tests. The individual bugs are still referenced by their Git commit identifier and not packaged as
individual Docker images.

To correctly judge the results of security analysis tools, information about the location of bugs in the
vulnerability source code is required. However, only the Julia Test Suites provides these details.

In summary, the evaluationmade clear no existing project can satisfy all six criteria. Particularly, only
one database contains information about bug locations and only two isolate the analysis from the
host. Therefore, no existing bug collection is suitable for evaluation of security analysis tools. Addi‑
tionally, all databases are incompatible with each other. While most projects use CSV or XML to store
metadata, the specific data format is different, meaning data cannot be easily exchanged.

The new metadata format presented in this thesis will be specifically developed for testing security
analysis tools. Therefore, it will include information about the location of security issues in the source
code. Additionally, our approach will provide an execution environment with host isolation.

1.2.2. Software Competitions

The scientific community organizes several competitions on software research topics. Examples are
Test‑Comp [10] for software testing,SV‑COMP [11], focusingonsoftwareverificationandSMT‑COMP [12]
for SMT solvers. Theparticipants of these competitions provide tools, often the result of their latest re‑
search. During the competition, the tools are given various tasks and are then evaluated using criteria
such as accuracy or performance.

The nature of these competitions requires automation for the execution of the participating tools, as
the number of tasks that must be performed makes a manual approach infeasible. For example, the
2022 edition of SV‑COMP encompassed more than 15000 tasks with 47 participating verification sys‑
tems [11]. Competitions therefore developed systems that automate test execution, which we evalu‑
ated for their suitability regarding testing of security analysis tools.

SMT‑COMP utilizes the StarExec execution service and provides tasks to the entrants using SMT‑
LIB [13]. As this system is only able to operate on satisfiability modulo theories, is unsuitable for our
use‑case.

Both SV‑COMP and Test‑Comp perform the competition with BenchExec [14]. This framework exe‑
cutes the tools while measuring and limiting their resource usage. This allows for a fair comparison,
ensuring, for example, that all participants are providedwith the sameamount of CPU time. However,
BenchExec relies on the participating tool itself to determine whether a task was performed correctly.
This presents a problem for evaluating security analysis tools, as these do not provide such function‑
ality and require a separate tool with access to vulnerability metadata to judge results. Therefore,
BenchExec is also not an appropriate solution.

David Mehren 5

1. Introduction 6

1.3. Thesis Goals & Requirements

After the evaluation of preexisting solutions, we formulated twomain research questions for this the‑
sis:

• RQ1: Whatmetadata is required to effectively evaluate security analysis tools?
The basics of this topic were already considered in the evaluation, as we established that build
information, bug information and bug location is needed. We will further detail the required
metadata and develop a concrete format specification.

• RQ2: What infrastructure is required to automate the evaluation of security analysis
tools?
Our evaluation has shown that, while some vulnerability databases provide tooling to build
the software they contain, no project has a method to automatically evaluate the results of
security analysis tools. We will develop such amethod in this thesis.

The resulting specification and implementation should also satisfy the following further require‑
ments:

• Ease of use
Integratingmore analysis tools anddescribing vulnerabilities shouldbe reasonably simple. The
existing solutions often use complicated CSV oder XML formats to describe vulnerabilities and
provide no to way to verify completeness of user‑entered data.

• Expandability
The architecture and implementation should not limit the integration of analysis tools to a spe‑
cific programming language or analysis type.

• Isolation fromHost
To avoid dependency problems and improve reproducibility, vulnerable software should be ex‑
ecuted and analysed in an isolated environment.

• Support for vulnerability patching
To check if analyzers over‑report possible security issues, the removal of vulnerabilities from
analyzed code using patches should be supported.

1.4. Structure of this Thesis

The first chapter of this thesis contained an overview of the field of security analysis and evaluated
existing collections of software bugs and vulnerabilities in addition to automation systems for soft‑
ware competitions. In the following chapter, we explain various technologies utilized in this thesis
and justify their use.

David Mehren 6

1. Introduction 7

The third chapter lays out the ideas andmethods used to describe vulnerabilities and presents a pack‑
age format. The thesis continues with a more detailed discussion of our implementation of the com‑
mand line interface in the fourth chapter, highlighting metadata validation, the details of container
packaging and the modular systems for integration of build and analysis tools. Chapter five focuses
on the user interface, explaining the command line interface and how new analysis and build tool
modules are added.

In chapter six, we discuss the analysis and build tools thatwe integrated for this thesis. Chapter seven
evaluates our results, discussing the integration complexity, themetadata andpackaging formats and
the analysis infrastructure.

Finally, chapter eight presents current limits and possible future expansions and summarizes the the‑
sis.

David Mehren 7

2. Foundations

To fulfill the requirements laid out previously, this thesis makes use of existing techniques and solu‑
tions. In this chapter, we introduce these foundations and give reasons for our choices.

2.1. Docker & The Open Container Initiative

Containers isolate applications from each other and from the host system by using operating system
virtualization. In contrast to classic or “full” virtualization, containers share the host kernel and, on
Linux, use Control Groups (cgroups) for isolation. Each container has its own filesystem, networking
andmemory space, while cgroups also enable limiting the resource usage per container.

Containers are a popular way to package, ship and run software and solve different problems: They
provide isolation between the host and the running software, they allow shipping software in a de‑
fined, reproducible environment, and have become the de facto packaging standard for distributing
software.

The conceptof running software in a containerwaspopularized starting in 2013byDocker [15]. Docker
containers are commonly usedwithout a full operating system inside them, running only one applica‑
tion process per container. In 2015 theOpenContainer Initiative (OCI)was launched to standardize the
formats and technologies used. This resulted in the release of the OCI Runtime Specification [16] and
theOCI ImageFormatSpecification [17] in 20171. Today,manyother container engines capableof run‑
ningOCI containers are available, e.g., Podman2 or CRI‑O3. Containers are also used in Kubernetes4, a
container orchestration toolkit. It manages containers across multiple hosts and provides advanced
features like automatically scaling deployments depending on load or managing high availability.

As Docker is still one of the most popular container engines [18], and the advanced features of Kuber‑
netes are not required, this thesis will focus on Docker and will use Docker tooling.

Docker containers are created from images, which contain metadata and filesystem layers. Multiple
containers can be created from the same image and executed simultaneously, isolated from the other
1https://opencontainers.org/release‑notices/v1‑0‑0/
2https://podman.io
3https://github.com/cri‑o/cri‑o
4https://kubernetes.io

8

https://opencontainers.org/release-notices/v1-0-0/
https://podman.io
https://github.com/cri-o/cri-o
https://kubernetes.io

2. Foundations 9

containers. Each image layer records only the differences to the previous layer, saving disk space
if multiple containers share the same layers. During runtime, all layers are merged, so the running
application only sees the sumof all layers. Every Docker image has a base. This can either be another
image, which means the filesystem layers of that are used as the starting point for the new image, or
the special image scratch. This image is empty and the only image without a previous layer.

Docker allows adding labels to an image during its build process, which are stored in addition to the
container filesystem layers. Each label is identified by a key and maps to an arbitrary string. The vul‑
nerabilitymetadatawill be stored in such aDocker label, serialized as JSON. This allows introspection
of metadata without needing to interact with the container filesystem.

The most common way to describe the build process of containers is using a Dockerfile [19], which
employs a domain specific language to describe the steps required to build a container [20].

FROM maven
COPY src src
RUN mvn package
LABEL com.example.demo="Packaged with Maven"

We will now use the example in Listing 4 to discuss the structure of Dockerfiles in more detail: The
FROM statement defines the base image. The maven image in the example contains an OpenJDK5

installation in Ubuntu6 and the Maven7 project management tool. Using the COPY operation, files
can be added to the image. The example uses this instruction to copy the source folder of a Maven
project into the container. Next, the RUN operation is used to execute the Maven binary inside the
container, which performs compilation. Both operations each create a new image layer. The final
image therefore contains a number of layers from the maven base image, and two additional layers
created using the Dockerfile. Finally, a label is added to the image using the LABEL operation, which
only affects metadata and does not create a new layer.

A visualization of the docker image created in the example is displayed in Figure 2.1. Themaven base
image consists of multiple layers, containing the base operating system, a Java installation and the
maven binary. The COPY command creates another layer, as does the RUN command. Adding a label
to an image does not create a layer, as the label is included in the imagemetadata.

5https://openjdk.java.net/
6https://ubuntu.com/
7https://maven.apache.org/

David Mehren 9

https://openjdk.java.net/
https://ubuntu.com/
https://maven.apache.org/

2. Foundations 10

Figure 2.1.: Visualization of a Docker image, consisting of layers and an attached label. The
Dockerfile commands creating each layer are displayed on the left.

Images created this way are commonly shared using centralized registries such as Docker Hub8 or the
Quay Container Registry9, enabling fast delivery and exchange of applications.

Wewill leverageDocker to achieve the goal of host isolation. Docker images contain all dependencies,
libraries and utilities required to run the packaged application, so the dependency problems outlined
in the previous chapter are avoided. Docker is typically executed as a long‑running daemon, which
provides an HTTP‑based API. This API can be used to build container images, up‑ or download them
from registries and tomanage container execution. Docker also provides its own command line inter‑
face for these tasks, which utilizes the API and is well known by users as the docker executable. Our
approach will interact directly with the Docker daemon using HTTP, sidestepping the CLI.

2.2. Static & Dynamic Code Analysis

Software analysis techniques canbedivided into two categories: Static analysis anddynamic analysis
[21].

Static analysis is concerned with obtaining information about a programwithout running it. This can
mean using the source code text itself or introspecting a binary or bytecode [22]. A static analyzer
may use syntactic checks to look for calls to insecure API functions or use of a variable before a value
has been assigned. It may also use semantic checks to track data or control flow [23]. Commonly
used tools that employ static analysis includeSpotBugs10 and find‑sec‑bugs11, which findbugs in Java
applications. Bandit12 is another analyzer, designed to detect security issues in Python code.

8https://hub.docker.com
9https://quay.io

10https://spotbugs.github.io
11https://find‑sec‑bugs.github.io
12https://bandit.readthedocs.io

David Mehren 10

https://hub.docker.com
https://quay.io
https://spotbugs.github.io
https://find-sec-bugs.github.io
https://bandit.readthedocs.io

2. Foundations 11

In contrast to static analysis, dynamic analysis observes program behaviour during execution [24]. As
only the code path taken during execution can be analyzed, dynamic analysis might not cover the
complete codebase, but can still detect violations of previously defined rules. Somedynamic analysis
systems can automatically try to increase the code coverage by generating more input data. Tools
utilizingdynamic analysis require various inputs: Someoperatedirectly onabinary and ignore source
code. Others may add steps to the standard compilation process, instrumenting the resulting binary.
Tools may even require a complete replacement of the build process, for example when they utilize a
custom bytecode format for analysis.

public void doPost(HttpServletRequest request,HttpServletResponse response){
String param = "";
java.util.Enumeration<String> headers = request.getHeaders("demo");
if (headers != null && headers.hasMoreElements()) {

param = headers.nextElement(); // just grab first element
}
param = java.net.URLDecoder.decode(param, "UTF-8");
java.io.File fileTarget = new java.io.File(param, "/Test.txt");
response.getWriter().println(

"Access to file: '" +
org.owasp.esapi.ESAPI.encoder().encodeForHTML(fileTarget.toString())
+ "' created."

↪

↪

);
}

A type of dynamic analysis is taint tracking, commonly used to find security issues in web applica‑
tions [23]. In this type of software, unwanted flow of user‑provided data to security‑sensitive sinks,
suchasdatabasequeries, is a common issue. Todetect such flows, a taint is attached touser‑provided
data during runtime and tracked as data flows through the application. When data is passed through
dedicated sanitization functions, the taint is removed. These sanitizers “clean” user‑provided data,
e.g., byescapingcontrol characters ina string, so it cannot influencedatabasequeriesanymore. When
tainted data reaches a critical sink, the analysis environment monitoring the execution can report a
possible security issue along with the recorded data flow path.

Listing 12 shows an example of a vulnerability in a web application, detectable by both types of anal‑
ysis. The application extracts the user‑provided value of thedemoHTTP header and uses it in aFile
constructor after decoding. This constitutes a path traversal, as the value may contain ../, refer‑
encing the parent directory and therefore allowing to access arbitrary directories in the filesystem.
An attacker may, for example, send a header value of ../../../etc/passwd to try to access the
user database of a Linux operating system.

David Mehren 11

2. Foundations 12

2.3. Static Analysis Results Interchange Format

{
"runs": [{

"tool": {
"driver": {

"name": "SpotBugs", "version": "4.5.3", "language": "en",
"rules": [{

"id": "UC_USELESS_CONDITION",
"shortDescription": { "text": "Condition has no effect." }

}] } },
"results": [{

"ruleId": "UC_USELESS_CONDITION", "ruleIndex": 0,
"message": {

"id": "default",
"text": "Condition has no effect"

},
"level": "note",
"locations": [{

"physicalLocation": {
"artifactLocation": { "uri": "Main.java" },
"region": { "startLine": 7 }

},
"logicalLocations": [{

"name": "main(String[])",
"kind": "function",
"fullyQualifiedName": "Main.main(String[])"

}]
}

Toexchangeandcompare the results of the various analysis tools that are available, theStatic Analysis
Results Interchange Format (SARIF) was developed. It is a JSON‑based format, standardized by the
OASIS SARIF Technical Committee in 2020 [25]. The format is very flexible and can accommodate not
only results from security analysis tools, but also from, for example, accessibility checkers or code
linting tools. Although it was developed for static analysis, it is also possible to encode results of
dynamic analysis with SARIF.

Listing 2.3 contains a shortened SARIF output of the SpotBugs analysis tool. The example shows the
main typesof informationSARIFprovides: Thetool sectiondescribes theanalyzer thatwasexecuted
and includes a list of rules that were used for detection. These rules can carry more properties than
shown here, for example, a URL to a help page with a more detailed description or tags for the rule
type. Each individual result in theresults array contains the identifier of the rule that was violated,

David Mehren 12

2. Foundations 13

a human‑readable description and the location of the affected code. The physicalLocation de‑
scribes the location of the issue in the source code text, while the logicalLocations point to the
class or method names.

We use SARIF as an internal representation of analysis results and to make the results available to
other tools. As SARIF is already supported by many analysis tools, like CodeSonar13, the Clang Static
Analyzer14, SpotBugs15 or PyLint16 [26], we also use it as an input format.

13https://www.grammatech.com/products/source‑code‑analysis
14https://clang‑analyzer.llvm.org
15https://spotbugs.github.io
16https://pylint.org

David Mehren 13

https://www.grammatech.com/products/source-code-analysis
https://clang-analyzer.llvm.org
https://spotbugs.github.io
https://pylint.org

3. Vulnerability Metadata & Packaging

In the Chapter 1 we laid out the challenges faced by developers of security analysis tools and vulner‑
ability databases. This chapter presents our approach for metadata and a packaging format, called
Containers for Security Analysis Tools or CSAT. It enables easier exchange and re‑use of vulnerabili‑
ties.

3.1. Metadata for Vulnerable Software

CSAT’s metadata is used for two purposes: To describe vulnerabilities for users and to provide bug
information used for automation and judgement of analysis results.

For the primarily user‑facing part of the metadata, we include similar attributes as used by other
databases. Vulnerable software is described by its name, version, the vendor and a URL. This can be
used to e.g., display a list of available vulnerabilities to the user or to search for a specific software.

The second part of the vulnerability metadata is focused on automation. In Section 2.2 we explained
the concept of dynamic code analysis. As this type of analysis observes a programm during runtime,
it requires an executable. Vulnerability databases typically only contain source code, therefore com‑
pilation is required.

To automatically compile source code, our metadata needs to provide information about the build
system. CSAT must be able to choose the correct compiler or build tool for packaged software. The
metadata thereforedescribes theprogramming languageand identifies thebuild system. To correctly
execute thecreatedbinary,metadata includes informationabout thebinarypath, requiredarguments
and themain class. As not all software needs to be compiled or has amain class, all of these attributes
are optional.

The metadata also needs to describe the vulnerability sufficiently to make it possible to decide if an
analyzer has detected it correctly. We include three key facts: The type of vulnerability, a unique
identifier and the location in the source code. It is also possible not to include any vulnerability de‑
tails, which signifies that the packaged software explicitly does not have any vulnerabilities. Pack‑
aging non‑vulnerable software allows checking whether analysis tools over‑report issues, i.e. have
false‑positives.

14

3. Vulnerability Metadata & Packaging 15

To describe the type of vulnerability, we make use of the Common Weakness Enumeration (CWE), a
list of hardware and software weakness types [27]. For software, CWE categorizes weaknesses that
“are frequently used or encountered in software development” [28], e.g. CWE‑89 describes “Improper
Neutralization of Special Elements used in an SQL Command” or SQL injection [29]. CWE categories
are commonly used in security products, like static analyzers or vulnerability databases [30].

Another industry standard is the Common Vulnerabilities and Exposures (CVE) program [31]. In con‑
trast to the vulnerability types identified using CWEs, a CVE identifies a specific, publicly known vul‑
nerability. It includes a list of affected products, a description and references to e.g., the vulnerability
announcement by the software vendor. By providing the CVE ID of a vulnerability in themetadata, we
make it possible to cross‑reference other databases for information.

The metadata includes information about the location of the vulnerability in the source code. It sup‑
ports including the filename, line number, class name and function name, mirroring the approach
from SARIF of including both the physical and logical locations. As detailed information is not always
available for every vulnerability, only the filename is required, the other properties are optional.

name: "SecureProgram"
vendor: "Secure Inc."
version: "1.0.0"
language: "java" # Supported: java
url: "https://example.com"
build:

build_system: "javac" # Supported: javac, maven
exec:

bin_path: "build/secure-program" # Optional
main_class: "com.example.SecureProgram" # Optional
arguments: "-c start" # Optional

vulnerability: # Optional
cve: "CVE-2020-1234" # Optional
cwe: "CWE-1234" # Optional
location:

file: "src/main/java/com/example/App.java"
line: 5 # Optional
class_name: "com.example.utils" # Optional
function_name: "main" # Optional

provides_patch: false # Optional

Finally, a field for availability of a patch is included in the metadata. The patch must remove the vul‑
nerability from the packaged software and is used by the command line utility to generate a non‑
vulnerable variant of the vulnerability package. This topic is further discussed in Section 4.3.

As can be seen in the example in Listing 3.1, CSAT’s metadata utilizes YAML. This decision will be di‑

David Mehren 15

3. Vulnerability Metadata & Packaging 16

cussed inmore detail in Section 4.2. Themetadata fulfills the requirements fromSection 1.2.1. Specif‑
ically, the build and exec sections contain build information necessary to create and execute a bi‑
nary for dynamic analysis. The results of analysis tools can be compared to the included bug informa‑
tion and bug location, from the vulnerability section.

3.2. Packaging Vulnerabilities as Container Images

In addition tometadata describing the vulnerabilities, developers of vulnerability databases require a
way to package the collected artifacts and make them available to other projects. Another challenge
laid out in Section 1.1 is ensuring reproducibility of the build and analysis processes and indepen‑
dence from the host system.

Containers are a commonly used way to tackle these problems, as explained in Section 2.1. This sec‑
tionwill provide an overview of our concept of packaging security vulnerabilities into Docker contain‑
ers.

Each container image packages only one vulnerability. It encompasses the vulnerable software and
associatedmetadata, attached as a label.

A container image with vulnerability source code is called a source image and consists of only one
filesystem layer. The application source code is always stored in the /src directory of the container
filesystem, which is otherwise empty. The source image is created using the user‑provided meta‑
data and source code. If a patch is also provided, a second source image is produced, containing
the patched source code.

When a vulnerability is to be analyzed, either the source code or a binary is used, depending on the
type of analysis. For analyzers that operate directly on the source code, the source container can be
used as‑is and no further steps are necessary. If the vulnerable software needs to be compiled, a build
process as represented in Figure 3.1 is executed. It consists of three steps:

• First, a temporarybuild image is created. Thebase layer consists of thebuild tooling requiredby
the vulnerable software. Formany common tools like Maven, Ant or GNU Autotools, images are
already available from a Docker registry. The source image is added as a second layer, bringing
together the source code and the build tool in the same environment.

• The build process can then be executed by running the build tool. This will create a new filesys‑
tem layer with the build artifacts, which must be placed in the /build folder.

• This layer can then be used to create a final container image, that only contains the source code
from the source image and the artifact. This image is called the binary image and can then be
used for binary analysis.

David Mehren 16

3. Vulnerability Metadata & Packaging 17

Figure 3.1.: A binary image is created using the source image and a build tool image. The final
image only contains the build artifact and the source code.

Figure 3.2.: Overview of CSAT’s vulnerability build & patching process. Up to 4 image variants can
exist per vulnerability.

In case a patched source container is available, the analysis can also be executed on the patched vari‑
ant of the vulnerability. When the analyzer requires a binary image, the build process is repeatedwith
the patched source image.

In summary, up to four images can exist per vulnerability, as shown in Figure 3.2: an (unpatched)
source image, a corresponding binary image and a patched variant of each.

These Docker images can be easily shared using preexisting registry infrastructure like Docker
Hub. Projects collecting vulnerabilities can upload their container images, making them globally
available.

David Mehren 17

4. Architecture of the csat Command Line Tool

The CSATmetadata and packaging formats can already be used to describe and exchange vulnerabili‑
ties. Wenowpresent theaccompanyingcsat command line interface (CLI). It providesauser‑friendly
way to interact with packaged vulnerabilities and automates the analysis process.

This chapter focuses on the internal architecture of the CLI, while the next chapter discusses the user
interaction and integration of new tools in more detail.

4.1. Features and Architecture

The CSAT command line interface provides these main features:

• Metadata Validation: csat validates vulnerability metadata according to a schema and pro‑
vides human‑readable error messages.

• Vulnerability Packaging: csat packages vulnerability source code on the file system into a
container image.

• Analysis Automation: csat automates the analysis of these containers with security analy‑
sis tools. The compatibility between analyzer and vulnerability is checked automatically and
source code is automatically compiled if necessary.

• Result Verification: csat compares the analysis results with the expected values from vulner‑
ability metadata.

While vulnerabilities, once packaged, reside in the local Docker image registry, build tools and analyz‑
ers are directly integrated in csat’s source code. We designed the integration of analysis tools and
build systems in a modular way, to make it easy to add new tools to the analysis workflow.

18

4. Architecture of the csat Command Line Tool 19

Figure 4.1.: CSAT architecture overview, each column represents one Pythonmodule

An overview of CSAT’s architecture can be seen in Figure 4.1. The application consists of three main
Python packages, each concerned with a separate aspect of the workflow. The diagram shows them
as columns. The vulnerability package contains themetadata definition and handles its valida‑
tion. It alsomanages the creation of newvulnerability containers andprovides functionality to search
for existing containers. The builder package contains the build systems and handles the build pro‑
cess. The analysis tool modules are part of analyzer package, which also manages the analysis
process.

The three packages are similarly structured: Handling of the command line interface is performed
in a cli subpackage, while the high‑level business logic used by the CLI is contained in a manager
package. The diagram separates these from the other modules with horizontal lines. The module
system for build tools and analyzers consists of a registry and a base class for each type of module, in
addition to the modules themselves.

We use the Click1 library to create CSAT’s command line interface (CLI), as Clickmakes it easy to create
user‑friendly CLIs, e.g. by automatically generating help pages and providing autocompletion for the
available commands. The CLI is the main entry point for the application. The cli modules in the
vulnerability and analyzer packages each provide a CLI subcommand and contain code for
command parsing and display of the command results.

To interact with the Docker daemon, CSAT uses the Docker SDK for Python [32], which provides an
abstraction layer for the Docker HTTP API. We created a collection of utility methods for commonly
used actions, for example getting the metadata for a specific container. These are contained in the
util.dockermodule and are used throughout the application.

1https://click.palletsprojects.com

David Mehren 19

4. Architecture of the csat Command Line Tool 20

4.2. Metadata Schema & Validation

After establishing the contents of our vulnerability metadata, as described in Section 3.1, selection of
an interchange format is required. As themetadata for new vulnerabilities will be entered by humans,
user experience is important. Therefore, validation of the user‑entered data is key, as it provides di‑
rect feedback about correctness and completeness to the user. We choose to use YAML Ain’t Markup
Language (YAML) [33] as the format to provide metadata in. YAML is a “human‑friendly data serializa‑
tion language”, and a simple way to provide structured data using indentation. YAML is already used
as a configuration language in popular projects, such as Ansible2, docker‑compose3 or Kubernetes.

For checking the user‑provided data, we first evaluated StrictYAML [34], a YAML parser for Python that
supports a restricted subsetof the YAMLspecificationandprovides type‑safety and schemavalidation.
However, StrictYAML provides no way to export the schema for use with other software. In the future,
other toolsmight want to interoperate with the CSATmetadata format, so an interoperablemetadata
specification is required. Therefore, we concluded that StrictYAML does not fit our requirements.

After researching other options, focusing on schema export, we settled on Pydantic [35], a Python
library for data validation. It allowsdefining amodel asPython classes andalsoprovides functionality
to export the defined schemaas JSONSchema [36], a format for describing the structure of JSONdata.
This schema can then be used by other projects to generate code or to validate the implementation.
The CLI provides a command, which writes the schema to disk as a JSON file. The full schema is also
included in the appendix.

4.3. Vulnerability Packaging and Patching

The vulnerability.manager package is responsible for the packaging process. The manager
will first performa fewchecks to catchbasic errors, like validating the user‑providedmetadata.yml
against the schema and checking if the src folder is not empty. If any check fails, themanager raises
a corresponding error, which the command line handler uses to display an error message to the user.
Whenall checks passed, themanagerwill continuewith packaging and create the source image, using
the scratch image as a base: A simple Dockerfile is copied into the source folder, used to build the
Docker image and deleted afterwards. We use a Dockerfile on the filesystem to ensure that the user‑
provided src folder is correctly referenced and copied into the image. The metadata is serialized to
JSONandattached to thenewly createdsource imageasa label. As YAML is a strict subsetof JSON [33],
no information is lost by serialization.

2https://www.ansible.com/
3https://docs.docker.com/compose/

David Mehren 20

https://www.ansible.com/
https://docs.docker.com/compose/

4. Architecture of the csat Command Line Tool 21

FROM alpine as patcher
RUN apk add patch
COPY src /src
COPY patch patch
RUN patch -p1 -d /src < patch

FROM scratch
COPY --from=patcher /src /src

When the metadata.yml indicates that a patched container should be built, CSAT first checks if a
patchfile is present in the source folder. This file must contain the source code changes that remove
the vulnerability, in a format accepted by the GNUpatch utility. To apply the patch to the source code,
a multi‑stage Docker build is performed using the Dockerfile in Listing 4.3.

First, the GNUpatch utility4 is installed in a temporary container. Then, source code and the patch file
are copied into the container, and the patching is performed. The patch utility operates directly on
thesrc folderandapplies thechangesdescribed in thepatch file. ThesecondFROM statementbegins
a new build stage, starting with an empty base image. The patched source code is then copied from
the previous stage. Therefore, both the patched and unpatched container image contain the same
filesystem structure and only differ in metadata. The final image does not contain any remnants of
the patching process itself.

4.4. Modular Build System

As previously explained, the capability to compile or build source code into binaries is important, as it
allows analysis tools to examine the software during runtime. CSAT employs a modular build system
and a central registry for builders, to ensure that new build tools can be easily integrated.

Each build system integrated into CSAT has a corresponding wrapper class in the builder package,
which provides an abstraction layer and a common API for the rest of the application.

4.4.1. Builder Modules

All build systems are collected in thebuilderpackage and inherit from theBaseBuilder abstract
base class. An excerpt from this class canbe seen in Listing 4.4.1. It defines a list of attributes that each
build tool module must provide and implements a buildmethod, which utilizes these attributes to
create a new Docker image. This implementation is reused in the inheriting classes, so new builders
can be added just by declaring attributes.

4https://savannah.gnu.org/projects/patch/

David Mehren 21

https://savannah.gnu.org/projects/patch/

4. Architecture of the csat Command Line Tool 22

The id is a unique identifier for the build system and used e.g. in the vulnerability metadata.
build_image and build_steps specify the base image and the Dockerfile instructions for
building, while run_image and run_steps provide the same information for building the execu‑
tion environment. The run_command attribute contains a single command used for starting the
application and is later used as the container entrypoint.

class BaseBuilder(ABC):
id: str
build_image: str
build_steps: str
run_image: str
run_steps: str
run_command: str
artifact_type: ArtifactTypeEnum

def build(self, src_tag: str, dest_tag: str) -> Image:
...

4.4.2. Builder Dockerfile

The build process utilizes a multi‑stage Dockerfile, generated using a template, which can be seen
in Listing 4.4.2. The template variables are filled using the attributes of the respective builder class.
The Dockerfile first declares a new build stage src using the source container of the vulnerability. In
the second builder stage, the build steps are executed. All build artifacts must be placed into the
/build directory during the build process. The /build directory is then copied, together with the
source code, into the final container in the last stage. The resulting container now has a /src folder
with source code and a /build folder with the build artifacts. Themulti‑stage build ensures that no
unwanted remnants of the build process are packaged into the final image.

FROM {{ src_image }} as src

FROM {{ build_image }} as builder
COPY --from=src /src /src
{{ build_steps }}

FROM {{ run_image }}
COPY --from=builder /src /src
COPY --from=builder /build /build
WORKDIR /build
{{ run_steps }}
CMD ["{{ run_command | join ('", "') }}"]

David Mehren 22

4. Architecture of the csat Command Line Tool 23

4.4.3. Builder Registry

To enable discovery of newly added builder modules, we make use of a central registry. Each build
tool module has a unique identifier, which is used in vulnerability metadata and user interactions.
The registry provides a mapping from a builder ID to its class and discovers all available builders au‑
tomatically.

To achieve this, the registry walks all sub‑packages of the builder package and imports them, as
can be seen in Listing 4.4.3. Importing a Python package executes its __init__.py initialization
code, which in turn calls the registriesregister_buildermethod, tomake it aware of the builder
module. New builders can therefore be easily added by creating a new package with a builder class
and a call to register_builder in the package initialization code.

def setup_registry() -> None:
for loader, module_name, is_pkg in pkgutil.walk_packages(

[os.path.dirname(__file__)]
):

if is_pkg:
importlib.import_module(f".{module_name}", __package__)

global setup_done
setup_done = True

After being set up, the registry providesmethods to query for existence of a builder module by ID and
to fetch a builder class.

4.5. Analysis Tool Integration

Analysis tools examine software and produce a list of findings. This analysis can occur on source code
or during runtime. CSAT uses a similar architecture for analyzers as for build tools: All analyzers are
wrapped in a class, which inherits from a common BaseAnalyzer abstract base class. The base
class contains common functionality, so that simple analyzers can be added just by overriding a num‑
ber of variables. The analyzermodule of the application also contains a registry for the available
analyzers.

class BaseAnalyzer(ABC):
id: str
requires_build_changes: bool
compatible_builders: list[str]
compatible_artifact_types: list[str]
build_steps: str
analyzer_image: str

David Mehren 23

4. Architecture of the csat Command Line Tool 24

analyzer_command = ""

def source_tag(self) -> str:
...

def __init__(self, vulnerability_name: str, patched_source: bool):
self.source_vulnerability = vulnerability_name
self.patched_source = patched_source
self.tag = f"csat/{vulnerability_name}/analyze-{self.id}"

def build_analyze_image(self):
...

def parse_container_log(self, log: str) -> AnalysisRunResult:
return AnalysisRunResult(sarif=SarifLog.parse_raw(log))

def analyze(self) -> AnalysisRunResult:
self.build_analyze_image()
client = get_docker_client()
container = client.containers.run(self.tag, self.analyzer_command,

stdout=True, stderr=True, detach=True)
...
container_log_str = str(container.logs(), "utf-8")
return self.parse_container_log(container_log_str)

As can be seen in Listing 4.5, the BaseAnalyzer declares a list of required properties that the inher‑
iting classes must define for their respective specific analyzer. Among these attributes are a unique
identifier used in the registry and a flag that indicates whether the analyzer requires changes to the
build process. An analyzer must also specify a list of compatible build systems and artifact types,
which are used for the checks we laid out in the previous chapter. The analyze function is called
by the analysis manager and utilizes the other functions to create a new Docker image, execute the
analyzer and parse the results. build_analyze_image andparse_container_log can be in‑
dividually reimplemented by the wrapper classes, if the default functionality of the BaseAnalyzer
is insufficient. This may be the case when the analysis tool does not output its result as SARIF JSON
and further processing of its output is therefore required.

4.6. Analysis Automation & Result Verification

Thebulk of the analysis process itself is handledby theanalyzer.managerpackage. Only compar‑
ing the analysis results with the expected values is performed directly by the command line handler,

David Mehren 24

4. Architecture of the csat Command Line Tool 25

as this task involves frequent printing of results to the command line.

The complete analysis workflow consists of three parts, which are discussed in the following sections.
An overview is also displayed in Figure 4.2.

4.6.1. Preparation

First, CSAT prepares its internal registries of the available builders and analyzers and checks if the
requested analyzer exists. The builder of the analyzed software is fetched and the compatibility of
its artifact with the analyzer is verified. The compatibility check utilizes vulnerability and analyzer
metadata. Each analyzer declares compatibility with a list of artifact types, like Java class files or
JARs. If the vulnerable software uses a build system that does not produce a compatible artifact, the
analysis process cannotproceedand is abortedearly. When theanalyzer requires changes to thebuild
process, we also check if it is compatible with the vulnerability’s build tooling.

4.6.2. Analysis

The manager instantiates the analyzer class and calls its analyzemethod. The next steps depend
on the implementation of this method in the analyzer class. Some analysis tools require changes to
the default build process, for example to add instrumentation to the source code. CSAT provides two
ways toaccommodate suchchanges: Thebuildprocess canbe influencedby theanalyzer usinghooks,
which allow common changes, like adding a new dependency to a Maven project. Alternatively, the
build process can be completely replaced by a custom implementation provided by the analysis tool
module. When an analyzer needs to change the build process, the analysismanager also performs an
additional check: it verifies if the analyzer is compatiblewith the build systemof the vulnerability, i.e.,
that the required build changes are possible and implemented.

The default implementation of the analysis process first ensures that the required vulnerability image
is present. Depending on the type of analysis, a source or binary imagemay be required. If the binary
image is missing, it will be built automatically. Next, the analysis image is created by copying the
/src (and if required /build) folder into a new image based on the analyzer image.

Finally, the analysis itself is executed inside a container based on the image. If the analysis tool does
not output SARIF JSON directly, its output is now parsed and converted to SARIF. If a patched variant
of the vulnerability exists, the analysis is repeated once more, using the patched image.

David Mehren 25

4. Architecture of the csat Command Line Tool 26

4.6.3. Result Verification

The analyzermanager returns anAnalysisResult, which contains vulnerabilitymetadata and the
SARIFdata from theunpatchedandpatchedanalysis runs. The command linehandler then first prints
out the detected vulnerabilities. If both a patched and unpatched run was performed, both runs are
then compared, expecting the patching to have decreased the number of detected issues. Finally, the
detected location is comparedwith the expected one frommetadata. To enable further processing of
analysis results, they can also be saved to disk as a JSON file, which also includes the complete SARIF
data from the analyzer.

After comparing the analysis results with the metadata, CSAT reports one of five outcomes:

• True Positive: The analysis tool reported (at least) the expected vulnerability at the expected
location.

• False Positive: The analysis tool reported only unexpected vulnerabilities or vulnerabilities at
the wrong code location.

• True Negative: The analysis tool did not report any vulnerabilities and none were expected.
This can happen if a specifically non‑vulnerable software was packaged.

• False Negative: The analysis tool did not report any issues, even though one was expected.
• Error: The analysis did not complete successfully.

David Mehren 26

4. Architecture of the csat Command Line Tool 27

Setup registries

Build binary image

Yes
Binary image required & missing? No

Generate analysis image

Run analysis tool

Parse results to SARIF

No
Analyzer outputs SARIF JSON?

Yes
Analyzer compatible with build tool? No

Yes
Build changes required? No

Yes
Analyzer & artifact Type compatible? No

Yes
Analyzer exists? No

Figure 4.2.: Sequence Diagram of CSAT’s Vulnerability Analysis Workflow

David Mehren 27

5. User Interface

Having explained the internal architecture of our command line interface, this chapter focuses on the
external user interface. Users interact with CSAT in two ways: developers of analysis tools add new
analyzers asPython classes using themodule system. Newbuild tools are added similarly. In contrast,
users packaging vulnerabilities or performing analyses utilize the CLI and do not interact with Python
code.

5.1. Adding Analysis & Build Tools

CSAT uses a module system for analyzers and build tools, as we laid out in Chapter 4. Each tool is
wrapped in a Python class, which inherits from a corresponding abstract base class. A registry auto‑
matically detects all currently existing modules.

This simplifies integration of new tools. Although it is required to write Python code to add a new
analyzer or build tool, in many cases, only the declaration of variables is necessary.

class SpotbugsAnalyzer(BaseAnalyzer):
id = "spotbugs"
logger = logging.getLogger("csat.analyzer.spotbugs")
requires_build_changes = False
compatible_artifact_types = [ArtifactTypeEnum.jar,

ArtifactTypeEnum.class_files]↪

analyzer_image = "docker.io/openjdk:11-jre"
analyzer_command = "spotbugs -effort:max -sarif /build/"
build_steps = """RUN cd / \

&& curl
https://repo.maven.apache.org/maven2/com/github/spotbugs/spotbugs/4.5.3/
spotbugs-4.5.3.tgz -L -o spotbugs.tgz \

↪

↪

&& tar xvzf spotbugs.tgz \
&& rm spotbugs.tgz \
&& chmod +x spotbugs-4.5.3/bin/spotbugs \
&& update-alternatives --install /usr/bin/spotbugs spotbugs
/spotbugs-4.5.3/bin/spotbugs 1"""↪

28

5. User Interface 29

Listing 5.1 shows the wrapper class for the SpotBugs analyzer as an example. It sets the analyzer’s
identifier, declares that SpotBugs does not require changes to the build process and that it is compat‑
ible with both JARs and Java class files. The class also sets the Docker image used for execution and
the command to run the analyzer. Finally, it includes the Docker build steps to set up SpotBugs inside
the Docker image.

More complex cases can also be accommodated. For example, when the default analysis process
as implemented in the BaseAnalyzer class is unsuitable for an analysis tool, the corresponding
method can be overriden and the implementation replaced by a custom version.

Our modular system therefore provides both ease of use and flexibility, allowing people familiar with
a build tool or analyzer to quickly integrate it into CSAT.

5.2. Vulnerability Packaging

Whenanewvulnerability is to be packaged, the user first utilizes the CLI to create an empty vulnerabil‑
ity template. Then the source files andmetadata are added and finally the container image is created
using the CLI.

Figure 5.1.: Example of packaging a new vulnerability with the CSAT CLI

Figure 5.1 shows such a packaging process. First, a vulnerability template called demo is created
using thevulnerability create subcommand. CSAT creates a new folder, containing ameta-
data.yml template and an empty src directory. We already presented the contents of the meta‑

David Mehren 29

5. User Interface 30

data template in Listing 3.1. It includes optional properties with a corresponding annotation, making
it easy for a user to provide the most detailed data possible.

After adding a source code file and editing the metadata, our example continues with a first attempt
of packaging the new vulnerability. CSAT detects that the metadata specifies a patch, but no patch
file is present and aborts the packaging process. A similar error would occur if themetadata does not
match the schema or no source code files are present.

After the missing patch has been added to the vulnerability directory, packaging succeeds. CSAT cre‑
ates a new source image for the demo vulnerability. As a patch was provided, a second image with
the patched source code is also generated.

The CSAT command line interface user‑friendly, as it validates the enteredmetadata and provides im‑
mediate feedback to users. It also checks whether all expected files are present. To package vulnera‑
bilities, users do not need to directly interact with Dockerfiles or the Docker command line interface,
as CSAT automatically generates a Dockerfile for packaging and handles creation of the container im‑
age.

5.3. Analyzing Vulnerabilities

The command line interface supports users not only inpackaging, but also in analyzing vulnerabilities,
as shown in the example in Figure 5.2. It provides a command to list all locally available images, which
also shows if a patched variant of a vulnerability is available.

Figure 5.2.: Analyzing a vulnerability with the CSAT CLI

David Mehren 30

5. User Interface 31

In the example, the previously packaged demo vulnerability is first analyzed using SpotBugs. The
analyzer detects two issues in the source code, but only one in the patched container. As the patch
only removes the specific packaged vulnerability and SpotBugs detected it in the unpatched analysis
run, CSAT concludes that the detection is no false‑positive. The command line interface summarizes
this with a corresponding message in green text. For each issue, a description and the exact location
is also printed. As the location detected by SpotBugs matches the metadata, the CLI also reports
success.

The samevulnerability is thenanalyzedwith find‑sec‑bugs. This tool doesnotdetect the typeof issues
present in the demo source code, so zero issues are reported. The CLI therefore warns the user in
yellow text, printing the expected and the detected source code location.

As evident in the examples, our command line interface frequently uses color to increase readability.
Unexpected events are colored in red or yellow, while successful events are printed in green. All con‑
sole messages also include the message type as text (like WARNING or SUCCESS), to be readable by
color‑blind users.

David Mehren 31

6. Module Integration

The previous chapters presented ourmetadata format, the architecture of CSAT and its user interface.
This chapter will show howwe integrated various build tools and analyzers into CSAT.

6.1. Build Tool Integration

For the thesis, we integrated two Java build tools into CSAT.We chose Java, becausemultiple analysis
tools exist for this language, making it a good candidate for testing our tool with build systems and
analyzers of varying complexity. Additionally, Jaint, one of the analyzers we planned to integrate is
designed for Java.

First, we added the standard javac Java compiler from OpenJDK. The build process we chose to
implement is very simple: It consists of creating the target/builddirectory and then runningjavac
*.java && cp *.class /build in the container. This compiles all .java files inside the
/src directory and copies the resulting .class files to /build. Our implementation only allows
compiling basic Java projects, as all files must be in the same top‑level directory and no libraries can
be used. Nevertheless, it allowed testing of CSAT’s architecture during development and served as a
starting point for integrating more complex tools.

For a more real‑world scenario, we also implemented a module for the Maven build system. Maven
allows for more complicated Java projects, which, for example, utilize external dependencies and
may create a variety of different artifact types. Our integration currently only supports JARs. Analysis
tool wrapper classes can provide means to influence the build process by implementing additional
methods, which manipulate the internal state of a class instance. Our Maven module demonstrates
this aspect of CSAT, as additional Maven plugins can be added to the build process. This is facilitated
by the add_pluginmethod of the MavenBuilder class. Each invocation of this method adds a
new build step is added to the Dockerfile. These steps edit the pom.xml Maven configuration file
using xmlstarlet to add the plugin.

32

6. Module Integration 33

6.2. Analysis Tool Integration

We integrated four analyzers, SpotBugs for plain class files and JARs, SpotBugs for Maven, find‑sec‑
bugs and Jaint, during the implementation phase of this thesis.

The following sections discuss these analysis tools and the complexity of their integration in more
detail.

6.2.1. SpotBugs

SpotBugs [37] is a static analyzer for Java, available as plugins for build tools like Maven or Ant and as
a standalone utility. Both the Maven plugin and the standalone version were integrated into CSAT.

The standalone version served as the first analyzer to be integrated into CSAT. The SpotBugs CLI oper‑
ates on.class files or JARs and can output its analysis results as SARIF JSON. Thismade integration
straightforward, as thejavac builder produces.class files and SARIF JSONparsing is already han‑
dled by the base analyzer class. The SpotbugsAnalyzer class therefore only declares variables
and does not need to override any functions.

class SpotbugsMavenAnalyzer(BaseAnalyzer):
...
requires_build_changes = True
compatible_builders = [MavenBuilder.id]
compatible_artifact_types = [ArtifactTypeEnum.jar]

analyzer_image = "docker.io/maven:3-openjdk-11"
analyzer_command = "bash -c 'cd /src && mvn -q -Dspotbugs.sarifOutput=true

spotbugs:spotbugs && cat target/spotbugsSarif.json'"↪

def build_analyze_image(self):
metadata = get_src_metadata(self.source_tag)
builder = cast(MavenBuilder, registry.get_builder("maven")(metadata))
builder.run_steps = self.build_steps
builder.run_image = self.analyzer_image
builder.add_plugin("com.github.spotbugs", "spotbugs-maven-plugin",
"4.5.2.0")↪

builder.build(self.source_tag, self.tag)

The SpotBugs Maven analyzer demonstrates the ability to change the build process by adding itself
as a plugin. It overrides the build_analysis_imagemethod to build a modified analysis image
with theMavenbuilder, as seen in Listing 6.2.1. Using theadd_pluginmethod, the SpotBugs plugin
is added. All other analysis steps are performed by the implementation in the BaseAnalyzer class.

David Mehren 33

6. Module Integration 34

The Maven plugin of SpotBugs does not support outputting the SARIF result directly to standard out‑
put, so a workaround is employed. The analyzer_command first executes the build process with
Maven, but suppresses all output. After the build is completed, the JSON file written by the SpotBugs
plugin is printed to standard out using cat. This allows us to reuse the existing infrastructure that
extracts the result from the container output stream.

The two SpotBugs analyzers were the first we implemented and took the longest amount of time,
as they served as test‑cases for various aspects of the application architecture, which was developed
simultaneously. The finalwrapper class forSpotBugsoperatingonplain class filesor JARswasalready
presented in Listing 5.1 and is just 22 lines in length, including comments.

6.2.2. find‑sec‑bugs

Find‑sec‑bugs or Find Security Bugs [38] is a SpotBugs plugin that focuses on detecting security issues.
It was integrated only as a standalone plugin supporting .class files and JARs, in a very similar way
as the basic SpotBugs analyzer. The only difference is in log parsing, as find‑sec‑bugs prefixes the
SARIF output with non‑JSON data, which has to be removed.

The wrapper class for find‑sec‑bugs has a similar length as the SpotBugs wrapper, but implements
additional logic to parse the log output of the analyzer. This is required, as find‑sec‑bugs prints addi‑
tional output before the SARIF JSON, which has to be removed. We estimate the expenditure of time
for implementing this analyzer to about 30 to 45 minutes, including the parsing logic and creation of
the required Docker build steps.

6.2.3. Jaint

Jaint [39] is a framework for dynamic taint analysis of Java web applications. It utilizes JDart [40], a
dynamic symbolic executionengine, itself basedon JavaPathFinder (JPF) [41], a JavaVirtualMachine.
We integrated Jaint based on the artifact from [39].

Jaint uses a domain‑specific language (DSL), built using the Meta Programming System1 (MPS), to
define the security issues or taints it can detect. A code generator is used to create Java code per
defined taint, which thenmonitors the data flow according to the constraints specified using the DSL.
The artifact contains taint specifications for issues encountered in theOWASP benchmark. By default,
the output of Jaint does not contain sufficient information about the type and the location of the
detected taint. Therefore, wemodified the DSL code generator in MPS to include this information.

The version of Jaint from [39] is limited in the set of Java applications that can be successfully ana‑
lyzed. As we mentioned in Section 2.2, taint tracking observes the flow of data through an applica‑
1https://www.jetbrains.com/mps/

David Mehren 34

https://www.jetbrains.com/mps/

6. Module Integration 35

tion. When an application utilizes library code that is not taint‑aware, data flow cannot be tracked
correctly. Therefore, libraries must be (partly) replaced with a version that supports taint analysis, a
process called mocking.

Jaint also needs a test harness for analyzed applications, which instantiates classes and executes the
functions under test. The artifact only provides mock implementations and a test harness sufficient
to analyze vulnerable code snippets from the OWASP benchmark, other applications produce compi‑
lation errors. It may be possible to expand Jaint’s mocking to support more generic vulnerabilities,
but this is out of scope for this thesis.

Little documentation exists about the process to build Jaint itself, only a number of shell scripts are
available in the artifact. The build requires multiple JDK versions and both the Ant and Maven build
tools to generate the taint description using MPS and compile mocks, JPF and Jaint itself. Based on
the code from the artifact, we created a fork of Jaint, which includes a newly written Dockerfile and
the aforementioned modifications to the taint DSL code generator. Using the Dockerfile, we create
the Jaint Docker image used by CSAT.

TheOWASP snippets from the artifact are not compilablewithoutmocks fromJaint. This requires spe‑
cial handling inside CSAT, as the build manager normally tries to compile a vulnerability standalone.
CSAT cannot create binary containers from these OWASP benchmark tests, and the Jaint analyzer
module implements its own build_analyze_image function to compile OWASP tests with Jaint
mocks.

To package all 2740OWASP code snippets from the artifact that Jaint is able to analyze, we created an
additional command line tool, owasp2csat. It iterates over the OWASP vulnerabilities and parses
the accompanying XML files, which contain information about the vulnerability type. It then creates a
new source container per vulnerability, which can then be used by CSAT. Not all snippets contain vul‑
nerable code, some serve to check that Jaint does not produce false‑positives, a scenario that CSAT’s
metadata also supports.

Jaint was the final analyzer we integrated. Its integration was hampered by missing documentation,
lacking details in the analysis output and a complicated build process for Jaint and its dependencies,
requiringmultiple different build tools and Java versions. The integration process therefore tookmul‑
tiple days, as aDocker image for Jaint had tobe createdand the logoutput had tobeextended to yield
useful information about the bug location. Much less effort was needed for the wrapper class in CSAT
itself. The most amount of work, amounting to 66 of the total 118 lines of code, was invested in log
parsing, which converts Jaint’s output into a SARIF data structure. The wrapper class also overrides
parts of the implementation of the base class, as Jaint and the vulnerabilities it analyzes require spe‑
cial build steps to account for the required mocking.

David Mehren 35

7. Evaluation

In this chapter, we show the results of integrating various build and analysis tools into CSAT. We also
discuss our work in light of the two research questions we posed in Section 1.3.

7.1. Build Tool Integration

We added modules for two Java build tools to CSAT as part of this thesis. This work was performed
during experimentation with the architecture of CSAT’s command line tool, so no useful record of the
required implementation time exists. The wrapper classes encompass less than 50 lines of Python
code, and we estimate that new build tools will require a comparable amount of code.

As arbitrary commands can be executed during the build process, implementation complexity is not
dependent on the programming language that is compiled. For example, the execution of thejavac
Java compiler can be replaced with ./configure && make for a conceivable integration of the
GNU Build System1.

7.2. Analysis Tool Integration

Our integration of four analysis tools provides important data about the complexity of adding further
analyzers to CSAT. While being somewhat subjective, wemaintain that integration time and code size
are still a good indicator for the required amount of work.

“Simple” analysis tools, which work inside the constraints of CSAT’s default build and analysis steps
and directly output SARIF JSON, do not require any custom Python code. Integration requires only
the declaration of a number of variables, about 20 lines of code. Users who are already familiar with
such tools can therefore easily add them. We expect the creation of a new module for such a tool to
only require about 30 minutes.

Wemust note that this estimation assumes that Docker images are already available for the analyzer.
If this is not the case, creating a Docker imagemay add significant work. An example for this scenario

1https://www.gnu.org/software/automake/manual/html_node/GNU‑Build‑System.html

36

https://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html

7. Evaluation 37

was Jaint, were we had to develop a Dockerfile ourselves. This and other required additional work
made the integration of Jaint take significantly more time when compared to the other analyzers.

We believe such long integration times to be the exception, as developers of new analysis tools are
intimately familiar with the workings of their analyzer. Creating a Docker container for the analyzer
will thereforebeeasier. New toolsmight alsobedevelopedwith theSARIF interchange format inmind,
which omits the necessity of implementing log parsing in CSAT.

We conclude that the module system of CSAT’s command line interface makes it easy to integrate
many analysis tools. Some tools may require more effort, for example if they do not output SARIF
JSON directly. Still, CSAT provides enough flexibility to allow their integration.

7.3. Vulnerability Metadata and Packaging

The first research question we formulated in Section 1.3 is “What metadata is required to effectively
evaluate security analysis tools?”. Our approach, as laid out in Section 3.1 answers this question. The
CSAT metadata format allows for automated compilation of vulnerable software by providing infor‑
mation about the build system. It also allows for automated evaluation of the analysis result, using
information about the bug type and its location in the source code. Wedemonstrated the feasibility of
this by implementing thecsat command line utility. Themetadata specification is defined using the
pydantic library andexportable as in the JSONSchema format. This allowsother software to generate
and validate CSATmetadata and interoperate with our vulnerability packages.

We evaluated the suitability of our metadata format by packaging all vulnerabilities of the OWASP
test suite for use with Jaint. Our owasp2csat command line tool demonstrates that conversion of
existing collections of vulnerable software to CSAT containers is possible with little effort.

We also conclude that our YAML‑basedmetadata format is significantlymore user‑friendly than other
approacheswithCSVorXML.Our validationsystemalsoprovidesdirect feedback tousersabouterrors
in their metadata.

7.4. Analysis Infrastructure

Our second research question is concernedwith the infrastructure required for automated evaluation
of security analysis tools. CSAT provides such infrastructure, using vulnerability metadata to judge
analysis results. The CSAT command line utility enables packaging of vulnerabilities into container
images and automates the analysis process. A module system for both build tools and analyzers sim‑
plifies the integration of new tools into CSAT.

David Mehren 37

7. Evaluation 38

When a patch removing the vulnerability is available, CSAT automatically applies the patch and runs
a second analysis, to compare whether the analyzer does not report a vulnerability for the patched
variant. This helps to sort out false‑positive findings.

Our implementation provides host isolation by using Docker containers, as we laid out in Section
2.1. This allows for reproducible build and analysis environments and sidesteps dependency prob‑
lems. Industry‑standard Docker images also enable sharing of vulnerabilities using already existing
container registries like Docker Hub.

7.5. Reproduction of Vulnerability Detection with Jaint

In [39], Mues et al. presented the Jaint taint‑analysis framework and evaluated it using the OWASP
Benchmark. Theauthorsused their own tooling for this evaluationand showed that Jaint successfully
detects 100%of vulnerabilities in the benchmark. Using thepublished artifact containing the analysis
framework and the used benchmark tests, we reproduced the results of the paper.

As described in Section 6.2.3, we integrated a Jaint module into CSAT and implemented the
owasp2csat tool to convert the OWASP tests to CSAT images. After performing the conversion
process, we utilized the csat command line tool to run Jaint against all tests. Our tool was able
to successfully automate the analysis process for all 2740 containers. However, the command line
interface does not yet provide a summarized report for bulk analysis runs. Still, we were able to
manually verify the results and concluded that Jaint achieves the same precisionwhen runwith CSAT
as in the original paper. Therefore, we demonstrated that CSAT can be integrated with a complicated
analysis tool and is useful for evaluation.

David Mehren 38

8. Conclusion

This thesis introduced the increasing importance of security analysis tools and laid out the challenges
encountered when testing such tools. The first chapter showed that existing bug and vulnerability
databases are not suitable for evaluation of security analyzers, as they lack the required information
and are not automated.

We presented our approach for a new solution, the Containers for Security Analysis Tools (CSAT) com‑
mand line utility andmetadata format.

Themetadata laidout inSection3.1providesall required information toautomatically compile source
code, making it available for analysis at runtime. It also includes details about the vulnerability type
and location in code, enabling the CSAT command line utility to automatically determine whether
an analysis tool found the correct issue. Our metadata design therefore answers research question
one.

We utilize Docker images to package and exchange vulnerable software including metadata. By ex‑
ecuting the analysis process in Docker containers, we achieve host isolation. Dependencies can be
installed independently of the host system and other containers in a reproducible environment that
avoids dependency problems.

The CSAT CLI supports users in packaging new vulnerabilities and automates the build and analy‑
sis process. Sections 5.2 and 5.3 showed our focus on ease of use in the CLI design. When a patch
is available, CSAT automatically applies it to the vulnerable source code to generate a second, non‑
vulnerable variant of the vulnerability package.

CSAT’s architecture allows to integrate build tools and analyzers on a modular basis. As presented
in Chapter 6, we integrated two build tools and four analyzer variants as part of this thesis, demon‑
strating that adding new analysis tools is simple and time‑efficient. CSAT is expandable and provides
enough flexibility to integrate tools that require special handling, like Jaint. In conjunction with the
metadata format, the CSAT command line interface is able to automatically evaluate security analysis
tools, therefore answering research question two.

Finally, we were able to reproduce the results of Mues et al., using CSAT to analyze thousands of
OWASP benchmark tests with Jaint. This shows that CSAT is usable in practical scenarios.

39

8. Conclusion 40

8.1. Limits and Future Work

Due to time constraints, our implementation of CSAT has certain limits, specifically its command line
tool.

Weonly addedJava‑basedbuild tools andanalyzers, but donot expect CSAT’s architecture to limit the
integration of tools for other programming languages. As Docker is used to execute a tool, as long as it
can run inside a Docker container, integration is possible. The list of supported languages is currently
hardcoded, but can be easily expanded.

The Docker images containing vulnerabilities can be exchanged using container registries like Docker
Hub. These registries typically do not provide direct access to the labels of the hosted images, but
CSAT’s metadata is stored in a label. Therefore, it is currently not possible to search for vulnera‑
bilities matching certain criteria (like a specific programming language or build system) without
first downloading at least the metadata of all images. A separate database collecting all available
CSAT‑compatible vulnerabilities in container registries would be required to provide such a search
feature.

The reporting features of CSAT’s command line interface are currently rather simple. We only imple‑
mented human‑readable log output and export of the results of a single analysis run. The export en‑
compasses analyzing one vulnerability with one analyzer, including the patched variant if available.
Future work might expand the output features to, for example, include statistics comparing multiple
analysis tools over a collection of vulnerabilities. Still, we were able to successfully replicate the re‑
sults of Jaint’s paper, even though the analysis results had to bemanually tallied.

In Section 1.2.1 we compared various existing vulnerability databases. Creating tools to import the
software already collected in these databases could prove valuable, as it makes hundreds of vulnera‑
bilities available to the analysis tools integrated into CSAT. However, most databases do not include
information about the bug location, rendering CSAT unable to decide if the correct vulnerability was
detected.

When CSAT’s abilities regarding search and reporting are expanded, we envision it to be suitable for
use as a packaging format for newly developed vulnerability collections or as an automation tool in
competitions such as SV‑COMP.

David Mehren 40

9. References

[1] S. Özkan, “Browse cve vulnerabilities by date. CVE details.” [Online]. Available: https://www.
cvedetails.com/browse‑by‑date.php. [Accessed: 15‑Apr‑2022]

[2] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability dataset with code changes
and CVE summaries,” in Proceedings of the 17th international conference on mining software
repositories, 2020, pp. 508–512, doi: 10.1145/3379597.3387501.

[3] G. Nikitopoulos, K. Dritsa, P. Louridas, and D. Mitropoulos, “CrossVul: A cross‑language vulner‑
ability dataset with commit data,” in Proceedings of the 29th ACM joint meeting on european
software engineering conference and symposium on the foundations of software engineering,
2021, pp. 1565–1569, doi: 10.1145/3468264.3473122.

[4] D. Wichers, “OWASP benchmark,” 12‑Apr‑2022. [Online]. Available: https://github.com/OWA
SP‑Benchmark/BenchmarkJava. [Accessed: 16‑Apr‑2022]

[5] P. E. Black, “Juliet 1.3 test suite: Changes from 1.2,” National Institute of Standards and Tech‑
nology, Gaithersburg, MD, NIST TN 1995, Jun. 2018 [Online]. Available: http://nvlpubs.nist.g
ov/nistpubs/TechnicalNotes/NIST.TN.1995.pdf. [Accessed: 16‑Apr‑2022]

[6] P. Gyimesi et al., “BUGSJS: A benchmark and taxonomy of JavaScript bugs,” Software Testing,
Verification and Reliability, vol. 31, no. 4, p. e1751, 2021, doi: 10.1002/stvr.1751.

[7] R. Widyasari et al., “BugsInPy: A database of existing bugs in python programs to enable con‑
trolled testing and debugging studies,” in Proceedings of the 28th ACM joint meeting on euro‑
pean software engineering conference and symposium on the foundations of software engineer‑
ing, 2020, pp. 1556–1560, doi: 10.1145/3368089.3417943.

[8] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to enable controlled
testing studies for java programs,” in Proceedings of the 2014 international symposium on soft‑
ware testing and analysis, 2014, pp. 437–440, doi: 10.1145/2610384.2628055.

[9] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont, “A manually‑curated dataset of
fixes tovulnerabilitiesofopen‑source software,” in2019 IEEE/ACM16th international conference
on mining software repositories (MSR), 2019, pp. 383–387, doi: 10.1109/MSR.2019.00064.

[10] D. Beyer, “Advances in automatic software testing: Test‑comp 2022,” in Fundamental ap‑
proaches to software engineering, 2022, pp. 321–335, doi: 10.1007/978‑3‑030‑99429‑7_18.

41

https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1145/3468264.3473122
https://github.com/OWASP-Benchmark/BenchmarkJava
https://github.com/OWASP-Benchmark/BenchmarkJava
http://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1995.pdf
http://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1995.pdf
https://doi.org/10.1002/stvr.1751
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/MSR.2019.00064
https://doi.org/10.1007/978-3-030-99429-7_18

9. References 42

[11] D. Beyer, “Progress on software verification: SV‑COMP 2022,” in Tools and algorithms for the
construction and analysis of systems, 2022, vol. 13244, pp. 375–402, doi: 10.1007/978‑3‑030‑
99527‑0_20.

[12] T. Weber, S. Conchon, D. Déharbe, M. Heizmann, A. Niemetz, and G. Reger, “The SMT competi‑
tion 2015–2018,” SAT, vol. 11, no. 1, pp. 221–259, Sep. 2019, doi: 10.3233/SAT190123.

[13] H. Barbosa, J. Hoenicke, and A. Hyvarinen, “16th international satisfiability modulo theories
competition (SMT‑COMP 2021): Rules and procedures,” p. 24, May 2021 [Online]. Available:
https://smt‑comp.github.io/2021/rules.pdf. [Accessed: 16‑May‑2022]

[14] D. Beyer, S. Löwe, and P.Wendler, “Reliable benchmarking: Requirements and solutions,” Int J
Softw Tools Technol Transfer, vol. 21, no. 1, pp. 1–29, Feb. 2019, doi: 10.1007/s10009‑017‑0469‑
y.

[15] D. Merkel et al., “Docker: Lightweight linux containers for consistent development and deploy‑
ment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[16] Open Container Initiative, “OCI runtime specification version 1.0.2,” 27‑Mar‑2020. [Online].
Available: https://github.com/opencontainers/runtime‑spec/blob/v1.0.2/spec.md. [Ac‑
cessed: 16‑Mar‑2022]

[17] Open Container Initiative, “OCI image format specification version 1.0.2,” 17‑Nov‑2021. [On‑
line]. Available: https://github.com/opencontainers/image‑spec/blob/v1.0.2/spec.md.
[Accessed: 16‑Mar‑2022]

[18] Flexera, “2022 Flexera state of the cloud report.” [Online]. Available: https://info.flexera.com
/CM‑REPORT‑State‑of‑the‑Cloud. [Accessed: 17‑Apr‑2022]

[19] “Dockerfile reference,” 2021. [Online]. Available: https://github.com/docker/cli/blob/v20.10.
13/docs/reference/builder.md. [Accessed: 16‑Mar‑2022]

[20] J. Cook, “The dockerfile,” in Docker for data science: Building scalable and extensible data in‑
frastructure around the jupyter notebook server, 2017, pp. 81–101, doi: 10.1007/978‑1‑4842‑
3012‑1_5.

[21] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic
malware‑analysis techniques and tools,” in ACM Computing Surveys, 2008, vol. 44, doi:
10.1145/2089125.2089126.

[22] B. A. Wichmann, A. A. Canning, D. W. R. Marsh, D. L. Clutterbuck, L. A. Winsborrow, and N. J.
Ward, “Industrial perspective on static analysis,” in Software Engineering Journal, 1995, vol.
10, pp. 69–75, doi: 10.1049/sej.1995.0010.

[23] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner, “Chapter one
‑ security testing: A survey,” in Advances in computers, 2016, vol. 101, pp. 1–51, doi:
10.1016/bs.adcom.2015.11.003.

[24] T. Ball, “The concept of dynamic analysis,” SIGSOFT Softw. Eng. Notes, vol. 24, no. 6, pp. 216–
234, Oct. 1999, doi: 10.1145/318774.318944.

David Mehren 42

https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.3233/SAT190123
https://smt-comp.github.io/2021/rules.pdf
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md
https://github.com/opencontainers/image-spec/blob/v1.0.2/spec.md
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://github.com/docker/cli/blob/v20.10.13/docs/reference/builder.md
https://github.com/docker/cli/blob/v20.10.13/docs/reference/builder.md
https://doi.org/10.1007/978-1-4842-3012-1_5
https://doi.org/10.1007/978-1-4842-3012-1_5
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1145/318774.318944

9. References 43

[25] M.C. FanningandL. J.Golding, Eds., “Static analysis results interchange format (SARIF) version
2.1.0,” 17‑Mar‑2020. [Online]. Available: https://docs.oasis‑open.org/sarif/sarif/v2.1.0/os/sar
if‑v2.1.0‑os.html. [Accessed: 16‑Mar‑2022]

[26] P. Anderson, Ł.Kot, N.Gilmore, andD.Vitek, “SARIF‑enabled tooling toencouragegradual tech‑
nical debt reduction,” in 2019 IEEE/ACM international conference on technical debt (TechDebt),
2019, pp. 71–72, doi: 10.1109/TechDebt.2019.00024.

[27] MITRE, “CWE ‑ common weakness enumeration.” [Online]. Available: https://cwe.mitre.org.
[Accessed: 31‑Mar‑2022]

[28] MITRE, “CWE ‑ CWE‑699: Software development (4.6).” [Online]. Available: https://cwe.mitre.
org/data/definitions/699.html. [Accessed: 31‑Mar‑2022]

[29] MITRE, “CWE ‑ CWE‑89: Improper neutralization of special elements used in an SQL command
(’SQL injection’) (4.6).” [Online]. Available: https://cwe.mitre.org/data/definitions/89.html.
[Accessed: 31‑Mar‑2022]

[30] MITRE, “CWE ‑ CWE‑compatible products and services.” [Online]. Available: https://cwe.mitr
e.org/compatible/product.html. [Accessed: 31‑Mar‑2022]

[31] D. E. Mann and S. M. Christey, “Towards a common enumeration of vulnerabilities,” presented
at the 2nd workshop on research with security vulnerability databases, 1999.

[32] Docker Inc., “Docker SDK for python,” 07‑Oct‑2021. [Online]. Available: https://docker‑py.rea
dthedocs.io/en/stable/. [Accessed: 16‑May‑2022]

[33] YAML Language Development Team, “YAML ain’t markup language (YAML™) revision 1.2.2,” 01‑
Oct‑2021. [Online]. Available: https://yaml.org/spec/1.2.2/. [Accessed: 14‑May‑2022]

[34] C. O’Connor, “StrictYAML,” 2021. [Online]. Available: https://hitchdev.com/strictyaml/. [Ac‑
cessed: 31‑Mar‑2022]

[35] S. Colvin, “Pydantic,” 31‑Mar‑2022. [Online]. Available: https://github.com/samuelcolvin/py
dantic. [Accessed: 31‑Mar‑2022]

[36] A. Wright, H. Andrews, B. Hutton, and G. Dennis, “JSON schema: A media type for describing
JSONdocuments,” Internet Engineering Task Force, Internet Draft draft‑bhutton‑json‑schema‑
00, Dec. 2020 [Online]. Available: https://datatracker.ietf.org/doc/draft‑bhutton‑json‑
schema‑00. [Accessed: 14‑May‑2022]

[37] The SpotBugs Core Team, “SpotBugs.” [Online]. Available: https://spotbugs.github.io/. [Ac‑
cessed: 16‑May‑2022]

[38] P. Arteau, “Find security bugs.” [Online]. Available: https://find‑sec‑bugs.github.io/. [Ac‑
cessed: 16‑May‑2022]

[39] M. Mues, T. Schallau, and F. Howar, “Jaint: A framework for user‑defined dynamic taint‑
analyses based on dynamic symbolic execution of java programs,” in Integrated formal meth‑
ods, 2020, pp. 123–140, doi: 10.1007/978‑3‑030‑63461‑2_7.

David Mehren 43

https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
https://doi.org/10.1109/TechDebt.2019.00024
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/compatible/product.html
https://cwe.mitre.org/compatible/product.html
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://yaml.org/spec/1.2.2/
https://hitchdev.com/strictyaml/
https://github.com/samuelcolvin/pydantic
https://github.com/samuelcolvin/pydantic
https://datatracker.ietf.org/doc/draft-bhutton-json-schema-00
https://datatracker.ietf.org/doc/draft-bhutton-json-schema-00
https://spotbugs.github.io/
https://find-sec-bugs.github.io/
https://doi.org/10.1007/978-3-030-63461-2_7

9. References 44

[40] K. Luckow et al., “JDart: A dynamic symbolic analysis framework,” in Tools and algorithms for
the construction and analysis of systems, 2016, pp. 442–459, doi: 10.1007/978‑3‑662‑49674‑
9_26.

[41] K. HavelundandT. Pressburger, “Model checking JAVAprogramsusing JAVAPathFinder,” STTT,
vol. 2, no. 4, pp. 366–381, Mar. 2000, doi: 10.1007/s100090050043.

David Mehren 44

https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/s100090050043

A. Appendix

Listing A.1: JSON Schema of CSAT’s vulnerability metadata

1 {
2 "title": "Metadata",
3 "description": "`pydantic.BaseModel` class with built-in YAML support

.\n\nYou can alternatively inherit from this to implement your
model:\n`(pydantic_yaml.YamlModelMixin, pydantic.BaseModel)`\n\
nSee Also\n--------\npydantic-yaml: https://github.com/
NowanIlfideme/pydantic-yaml\npydantic: https://pydantic-docs.
helpmanual.io/\npyyaml: https://pyyaml.org/\nruamel.yaml: https://
yaml.readthedocs.io/en/latest/index.html",

4 "type": "object",
5 "properties": {
6 "name": {
7 "title": "Name",
8 "type": "string"
9 },

10 "vendor": {
11 "title": "Vendor",
12 "type": "string"
13 },
14 "version": {
15 "title": "Version",
16 "type": "string"
17 },
18 "url": {
19 "title": "Url",
20 "minLength": 1,
21 "maxLength": 2083,
22 "format": "uri",
23 "type": "string"
24 },
25 "language": {
26 "$ref": "#/definitions/SupportedProgrammingLanguagesEnum"
27 },
28 "build": {
29 "$ref": "#/definitions/BuildMetadata"
30 },
31 "exec": {
32 "$ref": "#/definitions/ExecMetadata"
33 },

45

A. Appendix 46

34 "vulnerability": {
35 "$ref": "#/definitions/VulnerabilityMetadata"
36 },
37 "provides_patch": {
38 "title": "Provides Patch",
39 "default": false,
40 "type": "boolean"
41 }
42 },
43 "required": [
44 "name",
45 "vendor",
46 "version",
47 "url",
48 "language",
49 "build"
50],
51 "additionalProperties": false,
52 "definitions": {
53 "SupportedProgrammingLanguagesEnum": {
54 "title": "SupportedProgrammingLanguagesEnum",
55 "description": "An enumeration.",
56 "enum": [
57 "java"
58],
59 "type": "string"
60 },
61 "SupportedBuildSystemsEnum": {
62 "title": "SupportedBuildSystemsEnum",
63 "description": "An enumeration.",
64 "enum": [
65 "javac",
66 "maven"
67],
68 "type": "string"
69 },
70 "BuildMetadata": {
71 "title": "BuildMetadata",
72 "type": "object",
73 "properties": {
74 "build_system": {
75 "$ref": "#/definitions/SupportedBuildSystemsEnum"
76 }
77 },
78 "required": [
79 "build_system"
80],
81 "additionalProperties": false
82 },
83 "ExecMetadata": {
84 "title": "ExecMetadata",

David Mehren 46

A. Appendix 47

85 "type": "object",
86 "properties": {
87 "bin_path": {
88 "title": "Bin Path",
89 "type": "string"
90 },
91 "main_class": {
92 "title": "Main Class",
93 "type": "string"
94 },
95 "arguments": {
96 "title": "Arguments",
97 "type": "string"
98 }
99 },begin{d

100 "additionalProperties": false
101 },
102 "VulnerabilityLocationMetadata": {
103 "title": "VulnerabilityLocationMetadata",
104 "type": "object",
105 "properties": {
106 "file": {
107 "title": "File",
108 "type": "string"
109 },
110 "line": {
111 "title": "Line",
112 "type": "string"
113 },
114 "class_name": {
115 "title": "Class Name",
116 "type": "string"
117 },
118 "function_name": {
119 "title": "Function Name",
120 "type": "string"
121 }
122 },
123 "required": [
124 "file"
125],
126 "additionalProperties": false
127 },
128 "VulnerabilityMetadata": {
129 "title": "VulnerabilityMetadata",
130 "type": "object",
131 "properties": {
132 "cve": {
133 "title": "Cve",
134 "type": "string"
135 },

David Mehren 47

A. Appendix 48

136 "cwe": {
137 "title": "Cwe",
138 "type": "string"
139 },
140 "location": {
141 "$ref": "#/definitions/VulnerabilityLocationMetadata"
142 }
143 },
144 "required": [
145 "location"
146],
147 "additionalProperties": false
148 }
149 }
150 }

David Mehren 48

	Abstract
	Introduction
	Security Analysis
	Related Work
	Thesis Goals & Requirements
	Structure of this Thesis

	Foundations
	Docker & The Open Container Initiative
	Static & Dynamic Code Analysis
	Static Analysis Results Interchange Format

	Vulnerability Metadata & Packaging
	Metadata for Vulnerable Software
	Packaging Vulnerabilities as Container Images

	Architecture of the csat Command Line Tool
	Features and Architecture
	Metadata Schema & Validation
	Vulnerability Packaging and Patching
	Modular Build System
	Analysis Tool Integration
	Analysis Automation & Result Verification

	User Interface
	Adding Analysis & Build Tools
	Vulnerability Packaging
	Analyzing Vulnerabilities

	Module Integration
	Build Tool Integration
	Analysis Tool Integration

	Evaluation
	Build Tool Integration
	Analysis Tool Integration
	Vulnerability Metadata and Packaging
	Analysis Infrastructure
	Reproduction of Vulnerability Detection with Jaint

	Conclusion
	Limits and Future Work

	References
	Appendix

